Abstract
Spatiotemporal data from urban road traffic are pivotal for intelligent transportation systems and urban planning. Nonetheless, missing data in traffic datasets is a common challenge due to equipment failures, communication issues, and monitoring limitations, especially the missing not at random (MNAR) problem. This research introduces an approach to address MNAR-type missing data in traffic status prediction, utilizing a multidimensional feature sequence and a second-order hidden Markov model (2nd-order HMM). First, this approach involves extracting spatiotemporal features for the preset data sections and spatial features for the sections to be predicted based on the traffic spatiotemporal characteristics. Second, using the extracted features, distinctive road traffic features are generated for each section. Furthermore, at specific intervals within the defined time period, nearest distance feature matching is introduced to ascertain the traffic attributes of the road section under prediction. Finally, relying on the matched status results, a 2nd-order HMM is employed to forecast the traffic status for subsequent moments within the defined time period. Experiments were carried out using datasets from Shenzhen City and compared against the hidden Markov models and contrast measure (HMM-C) method to affirm the efficacy of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.