Abstract
Abstract—To ensure a smooth and secure flow of traffic, road signs are essential. A major cause of road accidents is negligence in viewing the Traffic signboards and interpreting them incorrectly. The proposed system helps in recognizing the Traffic sign and sending a voice alert through the speaker to the driver so that he/ she may take necessary decisions. The proposed system is trained using Convolutional Neural Network (CNN) which helps in traffic sign image recognition and classification. A set of classes are defined and trained on a particular dataset to make it more accurate. The German Traffic Sign Benchmarks Dataset was used, which contains approximately 43 categories and 51,900 images of traffic signs. The accuracy of the execution is about 98.52 percent. Following the detection of the sign by the system, a voice alert is sent through the speaker which notifies the driver. The proposed system also contains a section where the vehicle driver is alerted about the traffic signs in the near proximity which helps them to be aware of what rules to follow on the route. The aim of this system is to ensure the safety of the vehicle's driver, passengers, and pedestrians. Keywords—Convolutional Neural Network, GTSRB Dataset, Object Detection, Object Classification Traffic, Traffic Signs, Voice Alert
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.