Abstract
This paper investigates the traffic offloading over unlicensed bands for two-tier multi-mode small cell networks. We formulate this problem as a Stackelberg game and apply a hierarchical learning framework to jointly maximize the utilities of both macro base station (MBS) and small base stations (SBSs). During the learning process, the MBS behaves as a leader and the SBSs are followers. A pricing mechanism is adopt by MBS and the price information is broadcasted to all SBSs by MBS firstly, then each SBS competes with other SBSs and takes its best response strategies to appropriately allocate the traffic load in licensed and unlicensed band in the sequel, taking the traffic flow payment charged by MBS into consideration. Then, we present a hierarchical Q-learning algorithm (HQL) to discover the Stackelberg equilibrium. Additionally, if some extra information can be obtained via feedback, we propose an improved hierarchical Q-learning algorithm (IHQL) to speed up the SBSs’ learning process. Last but not the least, the convergence performance of the proposed two algorithms is analyzed. Numerical experiments are presented to validate the proposed schemes and show the effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: KSII Transactions on Internet and Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.