Abstract

AbstractTraditional traffic measurements meter throughput on time scales in the order of 5 minutes, e.g., using the Multi Router Traffic Grapher (MRTG) tool. The time scale on which users and machines perceive Quality of Service (QoS) is, obviously, orders of magnitudes smaller. One of many possible reasons for degradation of the perceived quality, is congestion on links along the path network packets traverse. In order to prevent quality degradation due to congestion, network links have to be dimensioned in such a way that they appropriately cater for traffic bursts on time scales similarly small to the time scale that determines perceived QoS. It is well-known that variability of link load on small time scales (e.g., 10 milliseconds) is larger than on large time scales (e.g., 5 minutes). Few quantitative figures are known, however, about the magnitude of the differences between fine and coarse-grained measurements. The novel aspect of this paper is that it quantifies the differences in measured link load on small and large time scales. The paper describes two case studies. One of the surprising results is that, even for a network with 2000 users, the difference between short-term and long-term average load can be more than 100%. This leads to the conclusion that, in order to prevent congestion, it may not be sufficient to use the 5 minute MRTG maximum and add a small safety margin.KeywordsAverage ThroughputNetwork LinkSmall Time ScaleLink LoadTime Window SizeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.