Abstract
We present an integrated traffic management and control approach for automated highway systems (AHS). The AHS consist of interacting roadside controllers and intelligent vehicles that are organized in platoons with short intraplatoon distances and larger distances between platoons. All vehicles are assumed to be fully automated, i.e., throttle, braking, and steering commands are determined by an automated onboard controller. The proposed control approach is based on a hierarchical traffic control architecture for AHS, and it also takes the connection and transition between the nonautomated part of the road network and the AHS into account. In particular, we combine dynamic speed limits and lane allocation for the platoons on the AHS highways with access control for the on-ramps using ramp metering, and we propose a model-based predictive control approach to determine optimal speed limits and lane allocations, as well as optimal release times for the platoons at the on-ramps. To illustrate the potential of the proposed traffic control method, we apply it to a simple simulation example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.