Abstract

In wavelength routed optical networks, the number of wavelength channels is limited due to several constraints and each wavelength as well as each lightpath support traffic in the Gbps range. On the other hand, the traffic requested by an individual connection is still in the Mbps range. Therefore, to utilize the network resources (such as bandwidth and transceivers) effectively, several low-speed traffic streams have to be efficiently groomed or multiplexed into one or more high-speed lightpaths. The grooming problem of a static demand is considered as an optimization problem. In this work, we have investigated the traffic grooming problem with the objective of maximizing the network throughput for wavelength-routed mesh networks and map this problem to the clique partitioning problem. We have proposed an algorithm to handle general multi-hop static traffic grooming based on the clique partitioning concept. The efficiency of our approach has been established through extensive simulation on different sets of traffic demands with different bandwidth granularities for different network topologies and compared the approach with existing algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.