Abstract

This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car s movement in a single lane. Traffic chaos is a promising field, and chaos theory has been applied to identify and predict its chaotic movement. A simulated traffic flow is generated using a car-following model(GM model) , and the distance between two cars is investigated for its dynamic properties. A positive Lyapunov exponent confirms the existence of chaotic behavior in the GM model. A new algorithm using a RBF NN (radial basis function neural network) is proposed to predict this traffic chaos. The experiment shows that the chaotic degree and predictable degree are determined by the first Lyapunov exponent. The algorithm proposed in this paper can be generalized to recognize and predict the chaos of short-time traffic flow series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.