Abstract

Abstract Vehicular ad hoc networks (VANETs) have emerged as an appropriate class of information propagation technology promising to link us even while moving at high speeds. In VANETs, a piece of information propagates through consecutive connections. In the most previous vehicular connectivity analysis, the provided probability density function of intervehicle distance throughout the wide variety of steady-state traffic flow conditions is surprisingly invariant. But, using a constant assumption, generates approximate communication results, prevents us from improving the performance of the current solutions and impedes designing the new applications on VANETs. Hence, in this paper, a mesoscopic vehicular mobility model in a multilane highway with a steady-state traffic flow condition is adopted. To model a traffic-centric distribution for the spatial per-hop progress and the expected spatial per-hop progress, different intervehicle distance distributions are utilized. Moreover, the expected number of hops, distribution of the number of successful multihop forwarding, the expected time delay and the expected connectivity distance are mathematically investigated. Finally, to model the distribution of the connectivity distances, a set of simplistic closed-form traffic-centric equations is proposed. The accuracy of the proposed model is confirmed using an event-based network simulator as well as a road traffic simulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call