Abstract

ABSTRACT Motorists often have to choose routes helping them to realize faster journey times. Route choices between an origin and a destination might involve direct main roads, shorter routes through narrow side streets, or longer but (potentially) faster journeys using motorways or ring-roads. In the absence of effective traffic control measures, an approximate equilibrium travel time may result between the routes available, which is generally expected to be far from optimal. In this paper, we investigate discrete and continuous optimization and equilibrium-type problems, for a simplified traffic assignment problem on a simple network with parallel links and fixed demand. We explore the interplay between solutions of certain optimization and equilibrium problems which can be solved by dynamic programming. The results are supported by numerical simulations, in which the price of anarchy is calculated to highlight the demand levels where there is a change in road choice and usage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.