Abstract

Accurate traffic anomaly prediction offers an opportunity to save the wounded at the right location in time. However, the complex process of traffic anomaly is affected by both various static factors and dynamic interactions. The recent evolving representation learning provides a new possibility to understand this complicated process, but with challenges of imbalanced data distribution and heterogeneity of features. To tackle these problems, this paper proposes a spatio-temporal evolution model named SNIPER for learning intricate feature interactions to predict traffic anomalies. Specifically, we design spatio-temporal encoders to transform spatio-temporal information into vector space indicating their natural relationship. Then, we propose a temporally dynamical evolving embedding method to pay more attention to rare traffic anomalies and develop an effective attention-based multiple graph convolutional network to formulate the spatially mutual influence from three different perspectives. The FC-LSTM is adopted to aggregate the heterogeneous features considering the spatio-temporal influences. Finally, a loss function is designed to overcome the 'over-smoothing' and solve the imbalanced data problem. Extensive experiments show that SNIPER averagely outperforms state-of-the-arts by 3.9%, 0.9%, 1.9% and 1.6% on Chicago datasets, and 2.4%, 0.6%, 2.6% and 1.3% on New York City datasets in metrics of AUC-PR, AUC-ROC, F1 score, and accuracy, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.