Abstract
The hereditary spastic paraplegias (HSPs) comprise a clinically and genetically diverse group of inherited neurological disorders in which the primary manifestation is progressive spasticity and weakness of the lower limbs. The identification of over 25 genetic loci and 11 gene products for these disorders has yielded new insights into the molecular pathways involved in the pathogenesis of HSPs. In particular, causative mutations in proteins implicated in mitochondrial function, intracellular transport and trafficking, axonal development, and myelination have been identified. In many cases, the proper intracellular trafficking and distribution of molecules and organelles are ultimately thought to be involved in HSP pathogenesis. In fact, deficits in intracellular cargo trafficking and transport are concordant with the length dependence of the distal axonopathy of upper motor neurons observed in HSP patients. Through a better understanding of the functions of the HSP gene products, novel therapeutic targets for treatment and prevention are being identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.