Abstract
Intelligent visual surveillance for road vehicles is the key to developing autonomous intelligent traffic systems. Recently, traffic incident detection employing computer vision and image processing has attracted much attention. In this paper, a probabilistic model for predicting traffic accidents using three-dimensional (3-D) model-based vehicle tracking is proposed. Sample data including motion trajectories are first obtained by 3-D model-based vehicle tracking. A fuzzy self-organizing neural network algorithm is then applied to learn activity patterns from the sample trajectories. Finally, vehicle activity is predicted by locating and matching each partial trajectory with the learned activity patterns, and the occurrence probability of a traffic accident is determined. Experiments show the effectiveness of the proposed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.