Abstract

EBV-encoded latent membrane protein 1 (LMP1) is critical for EBV-driven B-cell transformation and most EBV-associated malignancies and is also implicated in exacerbation of autoimmunity. LMP1 functionally mimics the TNFR superfamily member CD40, but LMP1-induced signals and downstream B-cell functions are amplified and sustained compared with those mediated by CD40. CD40 and LMP1 both depend upon TNFR-associated factor (TRAF) adaptor molecules to mediate signaling but use them differently. LMP1 is dependent upon TRAFs 3 and 5 to deliver B-cell activation signals, while CD40 predominantly uses TRAFs 2 and 6 for this purpose. Both LMP1 and CD40 functions in B cells require TRAF6, which physically associates with both receptors but via different binding sites. In B-cell CD40 signaling, TRAF6 is required for a particular subset of CD40-dependent immune functions in vivo. Inasmuch as CD40 and LMP1 use other TRAFs differentially, we predicted that TRAF6 is critical for a specific subset of LMP1 functions in vivo and that this subset will be overlapping but distinct from the TRAF6-requiring functions of CD40. This study tests this prediction using a B-cell-specific TRAF6-deficient mouse model. We found that B-cell TRAF6 is important for LMP1-mediated antibody and autoantibody production in mice, as well as germinal center formation, but not the secondary lymphoid organ enlargement that results from LMP1 transgenic expression. Results highlight differential TRAF6 requirements for specific B-cell functions by LMP1 versus CD40. These differences may make important contributions to the contrasts between normally regulated CD40 versus pathogenic LMP1-mediated signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.