Abstract
A nuclear serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) is a critical regulator of development and DNA damage response. HIPK2 can induce apoptosis under cellular stress conditions and thus its protein level is maintained low by constant proteasomal degradation. In the present study, we present evidence that TNF receptor-associated factor 2 (TRAF2) regulates the protein stability of HIPK2. Overexpression of TRAF2 decreased while its knockdown increased the HIPK2 protein level. The TRAF2-mediated decrease in HIPK2 protein expression was blocked by proteasomal inhibitor. In addition, TRAF2 decreased the protein half-life of HIPK2. We found that HIPK2 and TRAF2 co-immunoprecipitated. Interestingly, the co-immunoprecipitation was reduced while HIPK2 protein level increased following TNFα treatment, suggesting TNFα induced dissociation of TRAF2 from HIPK2 to accumulate HIPK2. Inhibition of HIPK2 partially suppressed TNFα-induced cell death, indicating that the accumulated HIPK2 may contribute to the TNFα-induced cell death. Our results suggest that TRAF2 can regulate proapoptotic function of HIPK2 by promoting proteasomal degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.