Abstract

The crown ethers 18-crown-6 (18C6), dicyclohexano-18-crown-6 (DCH18C6), and 4,4‘-(5‘)-di-(tert-butylcyclohexano)-18-crown-6 (Dtb18C6) were dissolved in 1-alkyl-3-methylimidazolium hexafluorophosphate ([Cnmim][PF6], n = 4, 6, 8) room-temperature ionic liquids (RTILs) and studied for the extraction of Na+, Cs+, and Sr2+ from aqueous solutions. In the absence of extractant, the distribution ratios for the metal ions indicate a strong preference for the aqueous phase. With the crown ethers as extractants in RTIL-based liquid/liquid separations, the resulting metal ion partitioning depends on the hydrophobicity of the crown ether and also on the composition of the aqueous phase (e.g., concentration of HNO3 vs Al(NO3)3). Aqueous solutions of HCl, Na3 citrate, NaNO3, and HNO3 (the latter at low concentrations) decrease the metal ion distribution ratios and also decrease the water content of the RTIL phase. High concentrations of HNO3 decompose PF6- and increase both the water content and the water solubility of the RTIL phase. Highly hydrated salts such as Al(NO3)3 and LiNO3 salt out both the RTIL ions and the crown ethers; thus, when the aqueous phase contains Al(NO3)3, the trend more closely resembles traditional solvent extraction behavior where DSr > DCs and the most hydrophobic extracting phase produces the highest partitioning. When [C8mim][PF6] is used as the extracting phase, the metal ions can be loaded from Al(NO3)3 and stripped using water. Dtb18C6 forms 1:1 complexes with Cs+ and Sr2+ and also yields the highest distribution ratios out of the three crowns examined. In comparison to traditional solvent extraction behavior, the metal ion partitioning in these systems exhibits exceptional behavior and, in certain instances, suggests a complicated partitioning mechanism, which necessitates a more thorough understanding of RTILs as solvents before interpretation of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.