Abstract

Methods for the analysis of one-factor randomized groups designs with ordered treatments are well established, but they do not apply in the case of more complex experiments. This article describes ordered treatment methods based on maximum-likelihood and robust estimation that apply to designs with clustered data, including those with a vector of covariates. The contrast coefficients proposed for the ordered treatment estimates yield higher power than those advocated by Abelson and Tukey; the proposed robust estimation method is shown (using theory and simulation) to yield both high power and robustness to outliers. Extensions for nonmonotonic alternatives are easily obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.