Abstract

Organophosphate esters (OPEs) are ubiquitous contaminants in the environment, whereas their atmospheric processes and fate are poorly understood. The present study revealed the spatial heterogeneity and seasonal variations of traditional and novel OPEs in PM2.5 (particulate matter with diameters < 2.5 μm) across a megacity (including residential areas and potential source sites) in South China. Potential influencing factors on the contamination levels of OPEs were addressed. The total concentrations of 11 traditional OPEs ranging from 262 to 42,194 pg/m3 (median = 1872 pg/m3) were substantially higher than those of 10 novel OPEs (33.5–3835 pg/m3, median = 318 pg/m3). Significant spatial and temporal variations in the concentrations of most OPEs were observed. The overall district-specific contamination levels in this city showed dependence on the secondary industry sector for non-predominant OPEs and on the tertiary industry for predominant OPEs. The seasonal variations of the OPE concentrations suggest difference in their sources or influence of meteorological conditions. The correlations between the individual OPEs in PM2.5 are determined largely by either their applications or physicochemical properties (in particular vapor pressure). The correlations between OPE concentrations and each meteorological factor (temperature, relative humidity, wind speed, and surface solar radiation) were inconsistent (positive and negative). Wind speed had the greatest effect on the OPE levels; While most OPEs bound to PM2.5 were not efficiently scavenged by below-cloud rainfall. The results suggest that atmospheric half-life and Henry’s Law Constant of OPEs are also determining factors for the wind speed and rainfall influence, respectively. However, mechanisms underlying the influence of meteorological conditions on atmospheric OPEs still need further research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.