Abstract

The authors provide an in-depth study of the various issues and tradeoffs available in algorithm-based error detection, as well as a general methodology for evaluating the schemes. They illustrate the approach on an extremely useful computation in the field of numerical linear algebra: QR factorization. They have implemented and investigated numerous ways of applying algorithm-based error detection using different system-level encoding strategies for QR factorization. Specifically, schemes based on the checksum and sum-of-squares (SOS) encoding techniques have been developed. The results of studies performed on a 16-processor Intel iPSC-2/D4/MX hypercube multiprocessor are reported. It is shown that, in general, the SOS approach gives much better coverage (85-100%) for QR factorization while maintaining low overheads (below 10%). >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.