Abstract

The reliability of gate oxides in SiC MOSFETs has come under increased scrutiny due to reduced performance under time dependent dielectric breakdown and increased threshold voltage instability. This paper investigates how 10% gate voltage (V GS ) derating in SiC MOSFETs can be implemented with minimal impact on loss performance. Using experimental measurements and electrothermal simulations of power converters, the trade-off between reduced V GS and conversion loss is investigated. It is shown that 10% V GS de-rating increases the ON-state resistance by 10% and the turn-ON switching energy by 7% average while the turn-OFF switching energy is unaffected. The low temperature sensitivity of the ON-state losses in SiC MOSFETs can be exploited since the rise in junction temperature due to V GS derating is marginal, unlike Si devices where ON-state resistance rises significantly with temperature. The load current and switching frequency influences the effectiveness of V GS derating. It is also shown that reducing the gate drive output impedance can compensate for V GS derating at high switching frequencies, with reduced total loss penalization. This may be important for protecting the gate oxide and enhancing its reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.