Abstract

The cost-effectiveness of total maximum daily load (TMDL) programs depends heavily on program design. We develop an optimization framework to evaluate design choices for the TMDL for the Potomac River, a Chesapeake Bay sub-basin. Scenario results suggest that policies inhibiting nutrient trading or offsets between point and nonpoint sources increase compliance costs markedly and reduce ecosystem service co-benefits relative to a least-cost solution. Key decision tradeoffs highlighted by the analysis include whether agricultural production should be exchanged for low-cost pollution abatement and other environmental benefits and whether lower compliance costs and higher co-benefits provide adequate compensation for lower certainty of water-quality outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.