Abstract

SUMMARYTrade‐off relationships are considered key to understanding the mechanisms supporting the coexistence of multiple species within kelp beds. Thus, information on trade‐offs is expected to contribute to conservation of kelp bed diversity. To test the existence of a trade‐off between productivity and thallus toughness, thallus traits and relationships between the traits were examined for seven species of Laminariales including 24 populations. For each population, photosynthetic capacity per unit biomass (as A mass) and nitrogen (i.e., photosynthetic nitrogen‐use efficiency, PNUE), nitrogen content (as N mass), thallus mass per unit thallus area (as TMA) and force required to penetrate the thallus (as F p, a common index of leaf toughness in land plants by punch test) were determined. A mass increased with increasing N mass. Blades with high N mass showed high A mass. These blades may invest a large proportion of nitrogen to the photosynthetic parts, and consequently exhibit high metabolic rates. Moreover, blades with high N mass tended to be associated with low TMA, and N mass decreased with increasing TMA. A significant negative correlation was observed between TMA and A mass because of the linkage of high A mass with high N mass and high N mass associated with low TMA, while a significant positive correlation was observed between TMA and F p. The two correlations indicate the existence of a trade‐off between productivity and thallus toughness in Laminariales. PNUE showed a significant negative correlation with TMA, which also showed a significant positive correlation with F p as the index of thallus toughness, and therefore a trade‐off relationship between productivity and thallus toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.