Abstract
Studying the relations between entanglement and coherence is essential in many quantum information applications. For this, we consider the concurrence, intrinsic concurrence and first-order coherence, and evaluate the proposed trade-off relations between them. In particular, we study the temporal evolution of a general two-qubit XYZ Heisenberg model with asymmetric spin-orbit interaction under decoherence and analyze the trade-off relations of quantum resource theory. For XYZ Heisenberg model, we confirm that the trade-off relation between intrinsic concurrence and first-order coherence holds. Furthermore, we show that the lower bound of intrinsic concurrence is universally valid, but the upper bound is generally not. These relations in Heisenberg models can provide a way to explore how quantum resources are distributed in spins, which may inspire future applications in quantum information processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.