Abstract

Shortened cementless femoral stems have become popular with the advent of minimally invasive total hip arthroplasty (THA). Successful THA requires initial stem stability and prevention of stress shielding-mediated bone loss, although the effect of stem shortening is controversial. Here we experimentally examined whether stem shortening affects stress shielding and initial stability. Anatomical stems (length, 120 mm) were cut to an 80 mm or 50 mm length. Ten tri-axial strain gauges measured the cortical strain on each stem-implanted femur to evaluate stress shielding. Two transducers measured axial relative displacement and rotation under single-leg stance loading. The 50 mm stem increased the equivalent strains with respect to the original stem in the proximal calcar region (31.0% relative to intact strain), proximal medial region (63.1%), and proximal lateral region (53.9%). In contrast, axial displacement and rotation increased with a decreasing stem length. However, the axial displacement of the 50 mm stem was below a critical value of 150 µm for bone ingrowth. Our findings indicate that, with regard to a reduction in stem length, there is a tradeoff between stress shielding and initial stability. Shortening the stem up to 50 mm can promote proximal load transfer, but bone loss would be inevitable, even with sufficient initial stability for long-term fixation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.