Abstract

The increasing number of wireless devices, the high required traffic bandwidth, and power consumption will lead to a revolution of mobile access networks, which is not a simple evolution of traditional ones. Cloud radio access network technologies are seen as promising solution in order to deal with the heavy requirements defined for 5G mobile networks. The introduction of the common public radio interface (CPRI) technology allows for a centralization in BaseBand unit (BBU) of some access functions with advantages in terms of power consumption saving when switching off algorithms are implemented. Unfortunately, the advantages of the CPRI technology are to be paid with an increase in required bandwidth to carry the traffic between the BBU and the radio remote unit (RRU), in which only the radio functions are implemented. For this reason, a tradeoff solution between power and bandwidth consumption is proposed and evaluated. The proposed solution consists of: 1) handling the traffic generated by the users through both RRU and traditional radio base stations (RBS) and 2) carrying the traffic generated by the RRU and RBS (CPRI and Ethernet flows) with a reconfigurable network. The proposed solution is investigated under the lognormal spatial traffic distribution assumption. After proposing resource dimensioning analytical models validated by simulation, we show how the sum of the bandwidth and power consumption may be minimized with the deployment of a given percentage of RRU. For instance we show how in 5G traffic scenarios this percentage can vary from 30% to 50% according to total traffic amount handled by a switching node of the reconfigurable network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.