Abstract

Exchange of crucial and confidential information leads to the unprecedented attention on the security problem in wireless networks. Even though the security has been studied in a number of works, the joint optimization of the physical layer security and the end-to-end delay management, which requires a meticulous cross-layer design, has seldom been evaluated. In this paper, by combining the tools from stochastic geometry and queueing theory, we analyze the tradeoff between the delay and the security performance in large wireless networks. We further propose a simple transmission mechanism which splits a message into two packets and evaluate its effect on the mean delay and the secrecy outage probability. Our numerical results reveal that the security performance is better for larger path loss exponent when the density of legitimate nodes is large, and it is reverse when the density is small. Moreover, it is observed that by introducing the simple mechanism of message split, the security performance is greatly improved in the backlogged scenario and slightly improved in the dynamic scenario when the density of legitimate transmitters is large. In summary, this paper provides an understanding and a rule-of-thumb for the practical design of wireless networks where both the delay and the security are key concerns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.