Abstract

ABSTRACTIn the present paper, a multi-objective goal optimization mechanism is developed by trading off between cost and variance. Both are adversaries to each other while allocating a sample size even in stratified sampling design. Discussion section shows how these adversaries put their influence on optimal selection. This is a dual optimization procedure in which variance or mean square error is optimized in the first step and then considering some compromise on variance, cost is optimized. The process is applied to both individual and multi-objective programming models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.