Abstract

Current research on multi-antenna architectures is trending towards increasing the amount of antennas in the base stations (BSs) so as to increase the spectral efficiency. As a result, the interconnection bandwidth and computational complexity required to process the data using centralized architectures is becoming prohibitively high. Decentralized architectures can reduce these requirements by pre-processing the data before it arrives at a central processing unit (CPU). However, performing decentralized processing introduces also cost in complexity/interconnection bandwidth at the antenna end which is in general being ignored. This paper aims at studying the interplay between level of decentralization and the associated complexity/interconnection bandwidth requirement at the antenna end. To do so, we propose a general framework for centralized/decentralized architectures that can explore said interplay by adjusting some system parameters, namely the number of connections to the CPU (level of decentralization), and the number of multiplications/outputs per antenna (complexity/interconnection bandwidth). We define a novel matrix decomposition, the WAX decomposition, that allows information-lossless processing within our proposed framework, and we use it to obtain the operational limits of the interplay under study. We also look into some of the limitations of the WAX decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.