Abstract

Boreal forests, storing approximately half of the global forest carbon (C), are key to the global C cycle and climate regulation. The sustainability of C stocks is adversely impacted by forest management. However, the economic gain–C stock relationship across forest management alternatives and diverse C pools remain unclear. Using empirical data, we examined the relationships between economic gains and total ecosystem C in response to the changes in rotation age and overstorey composition in boreal forests. We found that total ecosystem C increased initially, reached a maximum, and declined thereafter with increasing economic gains. The relationships between economic gains and C stocks of live biomass, deadwood, forest floor, and mineral soil followed similar trends with total ecosystem C. Path analysis showed that both rotation age and overstorey composition simultaneously drove economic gains and C stocks that led to their trade-off relationship. We further indicated that maximum economic gains (USD 5000/ha) could lead to approximately 40% loss of total ecosystem C, while the maximum total ecosystem C (320 Mg/ha) could be attained when giving up 50% of economic gains. These results provide broad guides for forest managers and decision-makers towards balancing economic and C objectives in forest management by integrating into a forest carbon market.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call