Abstract

A 15N labeling and lysimeter experiment was conducted with mesocosms of a semi-arid Leymus chinensis grassland. The aim of the study was to evaluate the effects of N fertilization timing (fertilization in fall or spring) and rate (0, 56, and 112 kg-N ha−1 year−1) on ecosystem services (seed yield and forage yield), ecosystem disservices (N leaching surveyed during 1 year and emissions of NH3 and N2O integrated over 76 days after fertilization), and recovery of added fertilizer N in plants and soil. Seed and forage yields increased more under fall than spring N fertilization. Further, N fertilization was linked to higher soil NH3 and N2O emissions, particularly under high N rate for both NH3 (2.0 and 1.6 kg-N ha−1 under fall and spring N fertilization, respectively) and N2O (0.24 and 0.21 kg-N ha−1, respectively). N leaching was never observed. A significant N fertilization timing × rate interaction effect was observed on plant recovery efficiency of added fertilizer N (Plant-NRE). Plant-NRE was higher for high than moderate N rate, with + 13.2% (from 22.8 to 36%) and + 16.4% (from 28.2 to 44.7%) for fall and spring fertilization, respectively. Fertilizer N recovered in soil was highest for moderate N rate in fall (68% of total N fertilizer) and lowest for high N rate in spring (46%). Our results show synergies among the ecosystem services (seed and forage yields) and among the disservices (NH3 and N2O emissions), and trade-offs between the services and disservices, some of these synergies and trade-offs being modulated by N fertilization timing and rate. Our study is the first one analyzing the possibly interactive effects of the N fertilization timing and rate on this range of ecosystem services and disservices in semi-arid perennial grasslands, which can be useful for N risk: benefit analysis when evaluating N fertilization strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.