Abstract

In species with complex life cycles hatching plasticity can provide an effective escape from egg predators, but theoretical studies predict a predation-risk trade-off across egg and larval stages. In this study, we examine whether the presence of an egg predator can alter the timing of hatching in an anuran, Rana temporaria, and the consequences of hatching plasticity after transition to the terrestrial habitat. Predator cues induced earlier hatching, and hatchlings were smaller, less developed and had relatively shorter and deeper tails than control hatchlings. The predator–induced differences in developmental time were compensated throughout the larval period; there was no predator effect on metamorph age or size. Surprisingly, the effects of egg predators were perceptible after metamorphosis. Juveniles emerging from the predator and the no-predator treatments differed in several size-adjusted morphological dimensions. Seemingly these morphological differences were not large enough to give rise to suboptimal growth or locomotor performance after metamorphosis. Thus, our results suggest only a short-term effect on juvenile phenotype, but not a trade-off between hatching time and juvenile performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.