Abstract

Besides a dose-rate threshold of 40-100Gy/s, the FLASH effect may require a dose>3.5-7Gy. Even in hypofractioned treatments, with all beams delivered in each fraction (ABEF), most healthy tissue is irradiated to a lower fraction dose. This can be circumvented by single-beam-per-fraction (SBPF) delivery, with a loss of healthy tissue sparing by fractionation. We investigated the trade-off between FLASH and loss of fractionation in SBPF stereotactic proton therapy of lung cancer and determined break-even FLASH-enhancement ratios (FERs). Treatment plans for 12 patients were generated. GTV delineations were available and a 5mm GTV-PTV margin was applied. Equiangular arrangements of 3, 5, 7, and 9 244MeV proton transmission beams were used. To facilitate SBPF, the number of fractions was equal to the number of beams. Iso-effective fractionation schedules with a single field uniform dose prescription were used: D95%,PTV=100%Dpres per beam. All plans were evaluated in terms of dose to lung and conformity of dose to target of FLASH-enhanced biologically equivalent dose (EQD2). Compared to ABEF, SBPF resulted in a median increase of EQD2mean to healthy lung of 56%, 58%, 55% and 54% in plans with 3, 5, 7 and 9 fractions respectively and of 236%, 78%, 50% and 41% in V100% EQD2, quantifying conformity. This can be compensated for by FERs of at least 1.28, 1.32, 1.30 and 1.23 respectively for EQD2mean and 1.29, 1.18, 1.28 and 1.15 for V100%,EQD2. A FLASH effect outweighing the loss of fractionation in SBPF may be achieved in stereotactic lung treatments. The trade-off with fractionation depends on the conditions under which the FLASH effect occurs. Better understanding of the underlying biology and the impact of delivery conditions is needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call