Abstract

Transmission of infectious diseases between immobile hosts (e.g., plants, farms) is strongly dependent on the spatial distribution of hosts and the distance-dependent probability of transmission. As the interplay between these factors is poorly understood, we use spatial process and transmission modelling to investigate how epidemic size is shaped by host clustering and spatial range of transmission. We find that for a given degree of clustering and individual-level infectivity, the probability that an epidemic occurs after an introduction is generally higher if transmission is predominantly local. However, local transmission also impedes transfer of the infection to new clusters. A consequence is that the total number of infections is maximal if the range of transmission is intermediate. In highly clustered populations, the infection dynamics is strongly determined by the probability of transmission between clusters of hosts, whereby local clusters act as multiplier of infection. We show that in such populations, a metapopulation model sometimes provides a good approximation of the total epidemic size, using probabilities of local extinction, the final size of infections in local clusters, and probabilities of cluster-to-cluster transmission. As a real-world example we analyse the case of avian influenza transmission between poultry farms in the Netherlands.

Highlights

  • The process of transmission of an infection from one host to the is central in the epidemiology of infectious diseases

  • Transmission of infectious diseases between immobile hosts depends on the transmission characteristics of the infection and on the spatial distribution of hosts

  • Examples include infectious diseases of plants that are spread by wind or via vectors (e.g., Asiatic citrus canker spread between citrus trees), diseases that are transmitted between local host populations, diseases of production animals that are spread between farms

Read more

Summary

Author summary

Transmission of infectious diseases between immobile hosts depends on the transmission characteristics of the infection and on the spatial distribution of hosts. We use spatial transmission modelling to investigate how the total number of infections over the course of an epidemic is determined by host clustering and spatial range of transmission. We find that for a given degree of clustering and infectivity of hosts, the number of infections is maximal if the spatial range of transmission is intermediate. In highly clustered populations we show that epidemic size can be approximated by a metapopulation model, illustrating that in such populations the transmission dynamics is dominated by transmission between clusters of hosts

Introduction
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.