Abstract

When solving multiobjective optimization problems, there is typically a decision maker (DM) who is responsible for determining the most preferred Pareto optimal solution based on his preferences. To gain confidence that the decisions to be made are the right ones for the DM, it is important to understand the trade-offs related to different Pareto optimal solutions. We first propose a trade-off analysis approach that can be connected to various multiobjective optimization methods utilizing a certain type of scalarization to produce Pareto optimal solutions. With this approach, the DM can conveniently learn about local trade-offs between the conflicting objectives and judge whether they are acceptable. The approach is based on an idea where the DM is able to make small changes in the components of a selected Pareto optimal objective vector. The resulting vector is treated as a reference point which is then projected to the tangent hyperplane of the Pareto optimal set located at the Pareto optimal solution selected. The obtained approximate Pareto optimal solutions can be used to study trade-off information. The approach is especially useful when trade-off analysis must be carried out without increasing computation workload. We demonstrate the usage of the approach through an academic example problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.