Abstract

Abstract This paper proposes a retrievable data perturbation model for overcoming the challenges in cloud computing. Initially, genetic whale optimization algorithm (genetic WOA) is developed by integrating genetic algorithm (GA) and WOA for generating the optimized secret key. Then, the input data and the optimized secret key are given to the Tracy–Singh product-based model for transforming the original database into perturbed database. Finally, the perturbed database can be retrieved by the client, if and only if the client knows the secret key. The performance of the proposed model is analyzed using three databases, namely, chess, T10I4D100K and retail databases from the FIMI data set based on the performance metrics, privacy and utility. Also, the proposed model is compared with the existing methods, such as Retrievable General Additive Data Perturbation, GA and WOA, for the key values 128 and 256. For the key value 128, the proposed model has the better privacy and utility of 0.18 and 0.83 while using the chess database. For the key value 256, the proposed model has the better privacy and utility of 0.18 and 0.85, using retail database. From the analysis, it can be shown that the proposed model has better privacy and utility values than the existing models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call