Abstract

Tractor-trailers have a higher drag coefficient than other vehicles due to their bluff-body shape. Over the years, numerous add-on devices have been invented to help reduce the drag. The current research investigates new add-on devices in the form of humps to reduce the base-drag of tractor-trailers. In the current investigation, computational fluid dynamics (CFD) in the form of unsteady Reynolds-averaged Navier-Stokes simulations is used to determine viable design strategies and optimize the new add-on device designs. A baseline model was built using an Ahmed body in both 2D and 3D. The predicted drag coefficient of the 3D Ahmed baseline model showed good agreement with experimental data. The 2D and 3D simulations with hump(s) showed some difference in drag reduction that was dependent on the hump geometry. A significant 3D effect existed. Results from the baseline validations as well as from simulations of tractor-trailer-like configurations with hump add-on devices are shown to demonstrate the drag reduction possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.