Abstract
The traction capacity of the mining machine is greatly influenced by the traction rheological properties of the deep-sea sediments. The best simulative soil was prepared for substituting the deep-sea sediment based on the deep-sea sediment collected from the Pacific C-C mining area. Traction rheological properties of the simulative soil were studied by a home-made test apparatus. In order to accurately describe the traction rheological properties and determine traction rheological parameters, the Newtonian dashpot in Maxwell body of Burgers model was replaced by a self-similarity spring-dashpot fractance and a new rheological constitutive model was deduced by fractional derivative theory. The results show the simulative soil has obvious non-attenuate rheological properties. The transient creep and stable creep rate increase with the traction, but they decrease with ground pressure. The fractional derivative Burgers model are better in describing non-attenuate rheological properties of the simulative soil than the classical Burgers model. For the new traction rheological constitutive equation of the simulative soil, the traction rheological parameters can be obtained by fitting the tested traction creep data with the traction creep constitutive equation. The ground contact length of track and walking velocity of the mining machine predicted by the traction rheological constitutive equation can be used to take full advantages of the maximum traction provided by the soil and safely improve mining efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.