Abstract

The interlock drive system generates traction by inserting narrow articulated spikes into the ground and by leveraging the soil's strength to resist horizontal draft forces. The system promises high tractive performance in low gravity environments where tires have little traction for lack of weight. At Earth and Space 2021 we reported the performance of such spikes on a silty clay loam, a cohesive soil. We found that in such soil, traction below a critical depth is provided by a zone of lateral soil failure. We also found that the articulation translates a horizontal draft force into a vertical penetration force strong enough to penetrate a narrow spike to a depth where the soil can sustain the draft force, in a self-regulating way. It is conceivable that a granular material like regolith or sand with little to no cohesive strength provides less vertical penetration resistance and less resistance to a horizontal draft force than a cohesive soil, which leads to the question of whether and how much tractive force an interlocking spike can generate on a granular material. Here we report on field trials that study different spike designs in dry and unsaturated moist sand. The results demonstrate that a loose granular material requires larger spikes than a cohesive soil, that these larger spikes penetrate dry and moist sand reliably, and that they promise good tractive efficiency. The trials indicate that on sand, a larger spike diameter can improve the pull/weight ratio without a loss of tractive performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call