Abstract

AbstractEcological assembly is a fundamental and yet poorly understood process. Three main obstacles hinder the development of a theory of assembly, and when these issues are sidestepped by making strong assumptions, one can build an assembly graph in which nodes are ecological communities and edges are invasions shifting their composition. The graph can then be analysed directly, without the need to consider dynamics. To showcase this framework, we build and analyse assembly graphs for the competitive Lotka–Volterra model, showing that in these cases sequential assembly (in which species invade a community one at a time) can reach the same configurations found when starting the system with all species present at different initial conditions. We discuss how our results can advance our understanding of assembly both from an empirical and a theoretical point of view, informing the study of ecological restoration and the design of ecological communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.