Abstract

Argumentation frameworks (AFs) are a core formalism in the field of formal argumentation. As most standard computational tasks regarding AFs are hard for the first or second level of the Polynomial Hierarchy, a variety of algorithmic approaches to achieve manageable runtimes have been considered in the past. Among them, the backdoor-approach and the treewidth-approach turned out to yield fixed-parameter tractable fragments. However, many applications yield high parameter values for these methods, often rendering them infeasible in practice. We introduce the backdoor-treewidth approach for abstract argumentation, combining the best of both worlds with a guaranteed parameter value that does not exceed the minimum of the backdoor- and treewidth-parameter. In particular, we formally define backdoor-treewidth and establish fixed-parameter tractability for standard reasoning tasks of abstract argumentation. Moreover, we provide systems to find and exploit backdoors of small width, and conduct systematic experiments evaluating the new parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.