Abstract

Tractography based on diffusion weighted imaging (DWI) data is a method for identifying the major white matter fascicles (tracts) in the living human brain. The health of these tracts is an important factor underlying many cognitive and neurological disorders. In vivo, tissue properties may vary systematically along each tract for several reasons: different populations of axons enter and exit the tract, and disease can strike at local positions within the tract. Hence quantifying and understanding diffusion measures along each fiber tract (Tract Profile) may reveal new insights into white matter development, function, and disease that are not obvious from mean measures of that tract. We demonstrate several novel findings related to Tract Profiles in the brains of typically developing children and children at risk for white matter injury secondary to preterm birth. First, fractional anisotropy (FA) values vary substantially within a tract but the Tract FA Profile is consistent across subjects. Thus, Tract Profiles contain far more information than mean diffusion measures. Second, developmental changes in FA occur at specific positions within the Tract Profile, rather than along the entire tract. Third, Tract Profiles can be used to compare white matter properties of individual patients to standardized Tract Profiles of a healthy population to elucidate unique features of that patient's clinical condition. Fourth, Tract Profiles can be used to evaluate the association between white matter properties and behavioral outcomes. Specifically, in the preterm group reading ability is positively correlated with FA measured at specific locations on the left arcuate and left superior longitudinal fasciculus and the magnitude of the correlation varies significantly along the Tract Profiles. We introduce open source software for automated fiber-tract quantification (AFQ) that measures Tract Profiles of MRI parameters for 18 white matter tracts. With further validation, AFQ Tract Profiles have potential for informing clinical management and decision-making.

Highlights

  • A major goal of clinical neuroimaging research is to make measurements that can accurately diagnose or characterize clinical conditions and predict clinical outcomes

  • We demonstrate that in the preterm sample reading proficiency is correlated with fractional anisotropy (FA) values at specific locations within two tracts: the left arcuate fasciculus and left superior longitudinal fasciculus

  • We found that FA varies systematically along the trajectory of each white matter fascicle

Read more

Summary

Introduction

A major goal of clinical neuroimaging research is to make measurements that can accurately diagnose or characterize clinical conditions and predict clinical outcomes. Achieving the goal requires an efficient procedure to (1) identify equivalent brain structures in healthy controls and individual patients and (2) measure biological properties of the structures that are sensitive to clinical abnormalities. We introduce an automated method for identifying specific white matter fascicles from diffusion weighted imaging data and quantifying biological properties along the length of these fascicles. Diffusion weighted imaging (DWI) is a magnetic resonance imaging (MRI) method that measures water diffusion in brain tissue in multiple directions. In regions of cerebral spinal fluid (CSF), the mean displacement of water molecules due to diffusion is similar and relatively large in all directions (isotropic). Cell membranes hinder the movement of water molecules, and the mean displacement of water molecules is smaller but still isotropic. In white matter, myelinated axons are directionally coherent causing anisotropic diffusion that is much smaller perpendicular to the axons than it is parallel to the axons [1,2,3] for review see [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call