Abstract

Although much prior work has focused on the known cortical pathology that defines Alzheimer’s disease (AD) histologically, recent work has additionally demonstrated substantial damage to the cerebral white matter in this condition. While there is large evidence of diffuse damage to the white matter in AD, it is unclear whether specific white matter tracts exhibit a more accelerated pattern of damage and whether the damage is associated with the classical neurodegenerative changes of AD. In this study, we investigated microstructural differences in the large fascicular bundles of the cerebral white matter of individuals with AD and mild cognitive impairment (MCI), using recently developed automated diffusion tractography procedures in the Alzheimer’s disease Neuroimaging Initiative (ADNI) dataset. Eighteen major fiber bundles in a total of 36 individuals with AD, 81 MCI and 60 control participants were examined with the TRActs Constrained by UnderLying Anatomy (TRACULA) procedure available as part of the FreeSurfer image processing software package. For each fiber bundle, the mean fractional anisotropy (FA), and mean, radial and axial diffusivities were calculated. Individuals with AD had increased diffusivities in both left and right cingulum-angular bundles compared to control participants (p<0.001). Individuals with MCI also had increased axial and mean diffusivities and increased FA in both cingulum-angular bundles compared to control participants (p<0.05) and decreased radial diffusivity compared to individuals with AD (p<0.05). We additionally examined how white matter deterioration relates to hippocampal volume, a traditional imaging measure of AD pathology, and found the strongest negative correlations in AD patients between hippocampal volume and the diffusivities of the cingulum-angular and cingulum-cingulate gyrus bundles and of the corticospinal tracts (p<0.05). However, statistically controlling for hippocampal volume did not remove all group differences in white matter measures, suggesting a unique contribution of white matter damage to AD unexplained by this disease biomarker. These results suggest that (1) AD-associated deterioration of white matter fibers is greatest in tracts known to be connected to areas of pathology in AD and (2) lower white matter tract integrity is more diffusely associated with lower hippocampal volume indicating that the pathology in the white matter follows to some degree the neurodegenerative staging and progression of this condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.