Abstract

The anti-Kasha process provides the possibility of using high-energy excited states to develop novel applications. Our previous research (Nature communications, 2020, 11, 793) has demonstrated a dual-emission anti-Kasha-active fluorophore for bioimaging application, which exhibits near-infrared emissions from the S1 state and visible anti-Kasha emissions from the S2 state. Here, we applied tunable blue-side femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy, assisted by quantum calculations, to reveal the anti-Kasha dual emission mechanism, in which the emergence of two fluorescing states is due to the retardation of internal conversion from the S2 state to the S1 state. It has been demonstrated that the facts of anti-Kasha high-energy emission are commonly attributed to a large energy gap between the two excited states, leading to a decrease in the internal conversion rate due to a poor Franck-Condon factor. In this study, analysis of the calculation and FSRS experimental results provide us further insight into the dual-emission anti-Kasha mechanism, where the observation of hydrogen out-of-plane Raman modes from FSRS suggested that, in addition to the energy-gap law, the initial photoinduced molecular conformational change plays a key role in influencing the rate of internal conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.