Abstract
The Paraná basin is the second largest river basin in South America and provides abundant water resources globally. However, current research lacks hydrological investigation of the region. The vertical crustal deformation recorded by the Global Navigation Satellite System (GNSS) can be used to accurately estimate regional-scale terrestrial water storage (TWS). Therefore, we utilized the daily vertical displacement time series data at 102 GNSS stations to recover the water storage variations in the Paraná basin from 2013 to 2020. To recognize primary spatiotemporal features of TWS changes, we applied the principal component analysis (PCA) method in the inversion strategy. Results indicate that the TWS variations inferred from GNSS generally align in spatiotemporal patterns with estimates from both the Gravity Recovery and Climate Experiment (GRACE) and the Global Land Data Assimilation System (GLDAS). However, some discrepancies are evident at local scales. The TWS changes derived from both GNSS and GRACE exhibited generally larger magnitude of oscillations than those estimated by GLDAS, while the GRACE results neglected the evident seasonal oscillation of the water mass in the southeast of the basin. Given the challenge of capturing large-scale runoff variations through in-situ observations, we innovatively applied GNSS and water budget closure method to provide a novel runoff estimate for the Paraná basin. The GNSS-inferred runoff exhibited a strong correlation (correlation coefficient of 0.72) with in-situ observations. Overall, our study fills the critical knowledge gap in geodesy-based hydrological investigation in the Paraná basin. We aim to highlight the immense potential of GNSS for hydrological parameter estimation and provide valuable reference data for regional hydrological research and for water resources management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.