Abstract

Real structures mode shapes estimated by modal analysis techniques have a common feature: in most cases they are complex, and their level of complexity can be soundly influenced by the presence and extent of physical damage, which also affects the distribution of energy dissipation mechanisms within the structures. Starting from the contributions available in the literature, the present paper investigates, from a numerical and experimental point of view, the correlation existing between localized damage and variation of global modal complexity indices conventionally employed to quantify the nonproportionality of damping in structural systems. Finally, driven by the inferences made through numerical and experimental test cases by tracking the variation of complex modes over multiple and progressive damage scenarios, a new index for damage localization and quantification is formulated and validated against real data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call