Abstract

ObjectivePain constitutes an essential alarm for preserving the organism’s integrity. Damage to the nervous system produces a pathological condition known as neuropathic pain.PurposeBlood oxygenation level-dependent (BOLD) and functional magnetic resonance imaging (fMRI) have been widely used to map neuroanatomy and the active regions of interest (ROI) of nociceptive processing. Our study explored the brain’s BOLD response in rats after thermal noxious stimulation, immediately after sciatic nerve damage and during 75 minutes after surgical lesion of the sciatic nerve.MethodsNine male Wistar rats were tested; the experiments were performed on a 7-Tesla /21-cm Varian Agilent system. This approach allowed, for the first time, to measure in vivo the BOLD changes in brain regions involved with the pain process: cingulated (ACC), somatosensory (S1), and insular cortices (IC), as well as thalamus (Th) and ventral tegmental area (VTA) related with acute thermal pain and during the early stages of sciatic denervation that produce neuropathic pain.ResultsDuring thermonociception scan, all subjects showed BOLD activation in the ROIs determined as ACC, S1, Th, IC and VTA. After denervation, these regions continued to show activation with a slow decrement in intensity for the duration of the experiment. The results suggest that these brain structures are overactive during the genesis of neuropathic pain.ConclusionThe study shows for the first time continuous activation of the pain matrix following an acute thermal nociceptive stimulus followed by neuropathic damage. These results have given insight into the early stages of the development of neuropathic pain in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call