Abstract

The development of orientation spreads within individual grains of a polycrystal submitted to large deformations is analysed by both experiment and simulation. In the experiment, 176 grains on an internal surface of a split sample were followed by detailed EBSD measurements, at successive strains up to 1.2. In parallel, a high-resolution finite element simulation has been carried out on the same polycrystal configuration. For both experiment and simulation, hundreds to thousands of orientation values were obtained in each grain. Most grains showed a “unimodal” rotation, composed of an average rotation and an orientation spread. The experimental and simulated orientation spreads were compared through different statistical metrics. The average lattice disorientations are found to increase rapidly at the beginning of the deformation and to saturate at high strains. The orientation spreads are also analysed in terms of anisotropy along the sample axes. It is shown that the orientation spreads are aligned preferably along TD at the beginning of the deformation, then tend to move to RD in the experiment, and RD or ND in the simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.