Abstract

Platinum single sites are highly attractive due to their high atom economy and can be generated on CeO2 by an oxidative high-temperature treatment. However, their location and activity are strongly debated. Furthermore, reaction-driven structural dynamics have not been addressed so far. In this study, we were able to evidence platinum-induced CeO2 surface restructuring, locate platinum single sites on CeO2 and track the variation of the active state under reaction conditions using a complementary approach of density functional theory calculations, in situ infrared spectroscopy, operando high-energy-resolution fluorescence detected X-ray absorption spectroscopy and catalytic CO (as well as C3H6 and CH4) oxidation. We found that the onset of CO oxidation is linked to the migration of platinum single sites from four-fold hollow sites to form small clusters containing a few platinum atoms. This demonstrates that operando studies on single sites are essential to assess their fate and the resulting catalytic properties. Single-atom catalysts hold great promise for process optimization by reducing metal utilization. However, their structure–activity properties remain elusive. Here, a combination of operando techniques and density functional theory analysis is used to capture the evolution of single platinum atoms on CeO2 during CO, C3H6 and CH4 oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.