Abstract

The design of enzyme-response hydrogels has attracted increasing interest in cell therapy, biomedical research, and tissue engineering. Their rational design usually depends on the enzyme-response mechanism and have focused on behavior improvement, drug delivery, and state transition of hydrogels. However, no enzyme-response mechanism has yet been systematically investigated. Here, we construct a tunable platform of tannic acid-embedded chitosan/γ-polyglutamic acid hydrogel to study the enzyme-response mechanism. We track the roles of gallic acid hydrolyzed from tannic acid in altering the structure and properties of the hydrogel to get insights into the mechanism. The gallic acid inside the hydrogel enhances hydrogel crosslinking, increasing the mechanical properties and pH sensitivity but reducing thickness, porosity, and swelling behavior. The gallic acid outside the hydrogel increases the positive potential and superficial hydrophobicity of the hydrogel. These findings will aid the rational design of other enzyme-response hydrogels in more extensive self-adaptive fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.