Abstract

Municipal solid waste (MSW), a carbon-intensive waste stream, may create both instant and indirect impacts onto environmental and climate management. Despite multiple studies made for greenhouse gases (GHGs) emissions of municipal waste, this research aims to achieve a comprehensive assessment for the carbon cycle by exploring evolution of waste composition and temporal-spatial disparities in waste management. Carbon flows embodied in MSW have been estimated across 31 provinces in Mainland China in the period 2000–2018. This improved estimation could be 15–40% smaller than the conventional estimation employing a constant waste composition. Aggregately some 578 ± 117 megatonnes carbon (MtC) were contained in MSW, including 239 ± 60 Mt of fossil carbon and 339 ± 58 Mt of degradable organic carbon. After treatment, 299 ± 66 MtC were possibly deposited in landfills and dumps. 279 ± 51 MtC were released to the atmosphere, creating net GHGs emissions equivalent to1870 ± 334 megatonnes of CO2 (MtCO2e). MSW generation in China nearly doubled during the period, net GHGs emissions increased by 1.8×, whereas fossil carbon grew by a factor of 3.5, mainly propelled by an increasing content of waste plastic in MSW. More rapid growth was witnessed in provinces in southern China than in northern. Distinct spatial–temporal evolution of waste and carbon metabolism was driven by increment, composition, and management effects. In the long run, the increment and composition effects may drop off. Enhanced practices of waste management integrating the circular economy are needed to fully recycle carbon flows, minimize emissions, and manage carbon deposits in aging landfills and dumps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.