Abstract
Motion tracking systems are commonly used in virtual reality-based interventions to detect movements in the real world and transfer them to the virtual environment. There are different tracking solutions based on different physical principles, which mainly define their performance parameters. However, special requirements have to be considered for rehabilitation purposes. This paper studies and compares the accuracy and jitter of three tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario and analyzes the subjective perceptions of 19 healthy subjects, 22 stroke survivors, and 14 physical therapists. The optical tracking system provided the best accuracy (1.074 ± 0.417 cm) while the electromagnetic device provided the most inaccurate results (11.027 ± 2.364 cm). However, this tracking solution provided the best jitter values (0.324 ± 0.093 cm), in contrast to the skeleton tracking, which had the worst results (1.522 ± 0.858 cm). Healthy individuals and professionals preferred the skeleton tracking solution rather than the optical and electromagnetic solution (in that order). Individuals with stroke chose the optical solution over the other options. Our results show that subjective perceptions and preferences are far from being constant among different populations, thus suggesting that these considerations, together with the performance parameters, should be also taken into account when designing a rehabilitation system.
Highlights
Virtual reality (VR) applications provide a sensory perception of interactive synthetic environments that replace the real environment in a sensory channel [1]
The virtual rehabilitation (VRHB) system used in the experiment represents the participants’ feet in an empty scenario, which consists of a checkered floor that facilitates the depth perception with a central circle that represents the center of the virtual environments (VE)
The present analysis focused on the accuracy and the jitter of the three tracking solutions described above
Summary
Virtual reality (VR) applications provide a sensory perception of interactive synthetic environments that replace the real environment in a sensory channel [1]. VR systems can recreate safe and controlled virtual environments (VE), with the benefits of intensive, variable, and task-oriented experiences, while providing the proper sensory feedback to promote learning and motivation. Poor accuracy can cause incongruences between the movement and its representation, and/or the use of wearable sensors can affect the natural movement patterns, etc These incongruences with the natural interaction within the real world can affect the immersion in the VE. The objectives of this study were twofold: (1) to study and compare the performance of three different tracking solutions (optical, electromagnetic, and skeleton tracking) in a practical scenario (a balance rehabilitation environment); and (2) to analyze the subjective responses of healthy and stroke individuals to the virtual experience when using the different technologies, and their implications for therapists
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.